Dominator tree

Lengauer-Tarjan algorithm

A path in G is a semidominator path if for . The semidominator of vertex v is defined as:

We compute sdom[*] using the reverse pre-order to utilize already-computed sdom[*] of larger indices. For each vertex v, enumerate its predecessor u, and the minimum pre-order number in the ancestor path of u provides a candidate sdom[v]. The following implementation employs a trick by merging parent[] into uf[].

With a simple implementation of eval-link, the time complexity is .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include <algorithm>
#include <cstdio>
using namespace std;

const int N = 100000, M = 500000;
struct Arc { int v, next; } pool[2*M+N], *pit;
int e[N], ee[N], domch[N], tick, dfn[N], rdfn[N], uf[N], sdom[N], best[N], idom[N];

void dfs(int u) {
dfn[u] = tick;
rdfn[tick++] = u;
for (int v, a = e[u]; ~a; a = pool[a].next)
if (dfn[v = pool[a].v] < 0) {
uf[v] = u;
dfs(v);
}
}

int eval(int v, int cur) {
if (dfn[v] <= cur)
return v;
int u = uf[v], r = eval(u, cur);
if (dfn[sdom[best[u]]] < dfn[sdom[best[v]]])
best[v] = best[u];
return uf[v] = r;
}

void simpleLengauerTarjan(int n, int r) {
fill_n(dfn, n, -1);
tick = 0;
dfs(r);
for (int i = 0; i < n; i++)
sdom[i] = best[i] = i;
for (int i = tick; --i; ) {
int v = rdfn[i], u;
for (int a = ee[v]; ~a; a = pool[a].next)
if (dfn[u = pool[a].v] != -1) {
eval(u, i);
if (dfn[sdom[best[u]]] < dfn[sdom[v]])
sdom[v] = sdom[best[u]];
}
*pit = {v, domch[sdom[v]]};
domch[sdom[v]] = pit++-pool;
v = rdfn[i-1];
for (int a = domch[v]; ~a; a = pool[a].next) {
u = pool[a].v;
eval(u, i-1);
idom[u] = sdom[best[u]] == v ? v : best[u];
}
}
for (int i = 1; i < tick; i++) {
int v = rdfn[i];
if (idom[v] != sdom[v])
idom[v] = idom[idom[v]];
}
}

int main() {
int n, m;
scanf("%d%d", &n, &m);
pit = pool;
fill_n(e, n, -1);
fill_n(ee, n, -1);
fill_n(domch, n, -1);
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d%d", &u, &v);
*pit = {v, e[u]};
e[u] = pit++-pool;
*pit = {u, ee[v]};
ee[v] = pit++-pool;
}
simpleLengauerTarjan(n, 0);

for (int i = 0; i < n; i++)
printf("%d: %d\n", i, idom[i]);
}

With a sophisticated method balancing union-find trees, the time complexity can be improved to .

Semi-NCA algorithm

Loukas Georgiadis proposed the Semi-NCA algorithm in Linear-Time Algorithms for Dominators and Related Problems. It has a time complexity of , but faster than the almost linear Lengauer-Tarjan's algorithm in practice.

For each vertex v that is not the source, idom(v) is the lowest common ancestor of sdom(v) and parent(v). For each vertex v in the pre-order except the source, ascend the ancestor path of v and find the deepest vertex whose pre-order number is less than or equal to sdom(v)'s number.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include <algorithm>
#include <cstdio>
#include <numeric>
using namespace std;

const int N = 100000, M = 500000;
struct Arc { int v, next; } pool[2*M], *pit;
int e[N], ee[N], tick, dfn[N], rdfn[N], uf[N], sdom[N], best[N], idom[N];

void dfs(int u) {
dfn[u] = tick;
rdfn[tick++] = u;
for (int v, a = e[u]; ~a; a = pool[a].next)
if (dfn[v = pool[a].v] < 0) {
uf[v] = u;
dfs(v);
}
}

int eval(int v, int cur) {
if (dfn[v] <= cur)
return v;
int u = uf[v], r = eval(u, cur);
if (dfn[best[u]] < dfn[best[v]])
best[v] = best[u];
return uf[v] = r;
}

void semiNca(int n, int r) {
fill_n(idom, n, -1); // delete if unreachable nodes are not needed
fill_n(dfn, n, -1);
tick = 0;
dfs(r);
iota(best, best+n, 0);
for (int i = tick; --i; ) {
int v = rdfn[i], u;
sdom[v] = v;
for (int a = ee[v]; ~a; a = pool[a].next)
if (~dfn[u = pool[a].v]) {
eval(u, i);
if (dfn[best[u]] < dfn[sdom[v]])
sdom[v] = best[u];
}
best[v] = sdom[v];
idom[v] = uf[v];
}
for (int i = 1; i < tick; i++) {
int v = rdfn[i];
while (dfn[idom[v]] > dfn[sdom[v]])
idom[v] = idom[idom[v]];
}
}

int main() {
int n, m;
scanf("%d%d", &n, &m);
pit = pool;
fill_n(e, n, -1);
fill_n(ee, n, -1);
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d%d", &u, &v);
*pit = {v, e[u]};
e[u] = pit++-pool;
*pit = {u, ee[v]};
ee[v] = pit++-pool;
}
semiNca(n, 0);

for (int i = 0; i < n; i++)
printf("%d: %d\n", i, idom[i]);
}

Testdata

The following tests helped me diagnose bugs in my semi-NCA implementation.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
digraph {
0 -> 1
1 -> 2
2 -> 3
1 -> 4
4 -> 5
3 -> 6
3 -> 5
2 -> 0
3 -> 1
0 -> 6
6 -> 4
5 -> 6
3 -> 1
5 -> 2
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
digraph {
0 -> 1
0 -> 2
2 -> 3
3 -> 4
2 -> 5
5 -> 6
4 -> 7
7 -> 8
3 -> 9
3 -> 4
3 -> 7
8 -> 2
5 -> 2
1 -> 8
8 -> 6
6 -> 4
1 -> 9
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
digraph {
0 -> 1
1 -> 2
0 -> 3
1 -> 4
1 -> 5
4 -> 6
2 -> 7
5 -> 8
3 -> 9
4 -> 8
6 -> 4
6 -> 5
5 -> 3
5 -> 4
6 -> 3
3 -> 4
2 -> 5
}

Iterative DFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#include <cstdio>
#include <iostream>
#include <type_traits>
#include <vector>
using namespace std;

#define FOR(i, a, b) for (remove_cv<remove_reference<decltype(b)>::type>::type i = (a); i < (b); i++)
#define REP(i, n) FOR(i, 0, n)

struct arc { int v, c; };
vector<vector<arc>> e, ee;
vector<int> seq, pre, post, idom;
int dfn;

void dfs(int u) {
pre[u] = dfn++;
for (arc a: e[u])
if (idom[a.v] == -1) {
idom[a.v] = u;
dfs(a.v);
}
seq.push_back(u);
post[u] = dfn;
}

void idfs(int n, int r) {
bool changed;
pre.resize(n);
post.resize(n);
seq.clear();
idom.assign(n, -1);
idom[r] = -2;
dfn = 0;
dfs(r);
do {
changed = false;
for (int i = seq.size() - 2; i >= 0; i--) {
int v = seq[i], x = -1;
for (arc &a: ee[v]) {
if (x == -1)
x = a.v;
else {
int y = a.v;
while (x != y) {
if (pre[x] > pre[y])
x = idom[x];
else
y = idom[y];
}
}
}
if (x != idom[v]) {
idom[v] = x;
changed = true;
}
}
} while (changed);
}

int main() {
int n, i, j, c;
cin >> n;
e.resize(n);
ee.resize(n);
while (cin >> i >> j) {
e[i].push_back(arc{j});
ee[j].push_back(arc{i});
}

idfs(n, 0);
REP(i, n)
printf("%d: %d\n", i, idom[i]);
}

Dynamic dominators

After insertion of (x,y), v is affected iff depth(nca)+1 < depth(v) && exists path P from y to v s.t depth(v) <= depth(w) and d(v) is changed to nca

Natural loops

See natural loops.